Miskoncepcie pojmov organickej chémie u absolventov základných škôl po školskej reforme na Slovensku
PDF

Jak citovat

Mĺkva, M., & Held, Ľubomír. (2020). Miskoncepcie pojmov organickej chémie u absolventov základných škôl po školskej reforme na Slovensku. Scientia in Educatione, 4(2), 3-19. https://doi.org/10.14712/18047106.69

Abstrakt

Početné výskumy dokazujú, že žiaci majú mylné predstavy v mnohých oblastiach chémie a problémy s pochopením viacerých chemických pojmov. Mylné koncepcie žiakov sú pevne zakotvené v ich kognitívnych štruktúrach, sú trváce, sú často odolné voči rôznorodým zmenám a nie je ľahké ich odstrániť. Náš článok demonštruje žiacke miskoncepcie v oblasti organickej chémie. Článok prezentuje kvalitatívny výskum žiackych predstáv a vedomostí v oblasti organickej chémie realizovaný na slovenských školách. Uvádza mnohé žiacke miskoncepcie a zistenia v tejto časti chémie. Predkladá tiež niekoľko odporúčaní pre elimináciu žiackych mylných predstáv v oblasti prírodných vied a pre zefektívnenie procesu ich vyučovania, ktoré by mohli zvýšiť záujem žiakov o štúdium prírodných vied a byť neoceniteľným „motorom? ich vnútornej motivácie.
https://doi.org/10.14712/18047106.69
PDF

Reference

BARBER, M., MOURSHED, M. How the world’s best-performing school systems come out on top. New York : McKinsey & Co., 2007, 56 p. Dostupné na: http://mckinseyonsociety.com/downloads/reports/Education/Worlds School Systems Final.pdf

BEAN, J. C. Engaging ideas: The Professor’s guide to integrating writing, critical thinking and active learning in the classroom. Seattle : Jossey-Bass, Seattle University, 1996, 320 p.

BEN-ZVI, R., EYLON, B., SILBERSTEIN, J. Is an atom of copper malleable? Journal of chemical education, 1986, vol. 63, no. 1, p. 64–66.

BOX, V. G. S. Using molecular modeling to understand some of the more subtle aspects of aromaticity and antiaromaticity. Journal of Chemical Education, 2011, vol. 88, no. 7, p. 898–906.

BRYAN, L. CH. H. Identifying Students’ Misconceptions in ‘A-Level’ Organic Chemistry. Innova Junior College, 2007. Dostupné na: http://conference.nie.edu.sg/2007/paper/papers/SCI352.pdf

BUNCE, D. M., HUTCHINSON, K. D. The use of the GALT (Group Assessment of Logical Thinking) as a predictor of academic success in college chemistry. Journal of Chemical Education, 1993, vol. 70, p. 183–187.

CARTRETTE, D. P., MAYO, P. M. Students’ understandings of acids/bases in organic chemistry contexts. Chemistry Education Research and Practice, 2011, vol. 12, p. 29–39.

DORI, Y. J., KABERMAN, Z. Assessing high school chemistry students’ modeling sub-skills in a computerized molecular modeling learning environment. Instructional Science. 2012, vol. 40, p. 69–91.

DRIVER, R. Students’ conceptions and the learning of science. International Journal of Science Education, 1989, vol. 11, p. 481–490.

FRANCISCO, J. S., NICOLL, G., TRAUTMANN, M. Integrating multiple teaching methods into a general chemistry classroom. Journal Chemical Education, 1998, vol. 75, p. 210–213.

HOLEC, S., KMEŤOVÁ, J., SPODNIAKOVÁ PFEFFEROVÁ, M., RAGANOVÁ, J., HRUŠKA, M. Testovanie prírodovednej gramotnosti PISA 2006. Fakulta prírodných vied, Univerzita Mateja Bela, Banská Bystrica, 2010, s. 59–69.

CHRISTIAN, K., TALANQUER, V. Modes of reasoning in self-initiated study groups in chemistry. Chemistry Education Research and Practice, 2012, vol. 13, no. 3, p. 286–295.

KOVAC, J. Student Active learning methods in General Chemistry. Journal of Chemical Education, 1999, vol. 76, p. 120.

KRUSE, R. A., ROEHRIG, G. H. A Comparison Study: Assessing Teachers’ Conceptions with the Chemistry Concepts Inventory. Journal of chemical education, 2005, vol. 82, no. 8, p. 1 246–1 250.

LIM, Ch., TAY, L., HEDBERG, J. Employing an Activity-Theoretical Perspective to Localize an Educational Innovation in an Elementary School. Journal of Educational Computing Research, 2011, vol. 44, no. 3, p. 319–344.

LOPEZ, E., NANDAGOPAL, K., CARDIN, N., SHAVELSON, R. J., PENN, J. H. Validating the use of concept-mapping as a diagnostic assessment tool in organic chemistry: implications for teaching. Chemistry Education Research and Practice, 2011, vol. 12, no. 2, p. 133–141.

LOU, S., LIN, H., SHIH, R., TSENG, K. Improving the effectiveness of organic chemistry experiments through multimedia teaching materials for junior high school students. Turkish Online Journal of Educational Technology – TOJET, 2012, vol. 11, no. 2, p. 135–141.

LOVERUDE, M. E., GONZALEZ, B. L., NANES, R. Inquiry-Based Course in Physics and Chemistry for Preservice K-8 Teachers. Physical Review Special Topics: Physics Education Research, 2011, vol. 7, no. 1.

LYNCH,D. J., TRUJILLO, H. Motivational Beliefs and Learning Strategies in Organic Chemistry. International Journal of Science and Mathematics Education, 2011, vol. 9, no. 6, p. 1 351–1 365.

McDERMOTT, L. Research on Conceptual Understanding in Mechanics. Physics Today, 1984, vol. 37, p. 4–32.

MĹKVA, M. Miskoncepcie žiakov v organickej chémii. InAktuálne trendy vo vyučovaní prírodných vied. Zborník z medzinárodnej konferencie Smolenice 15.–17. október 2012. Trnava : Trnavská univerzita v Trnave, Pedagogická fakulta, 2012, s. 66–72.

MOHAN, L., CHEN, J., ANDERSON, Ch. W. Developing a multi-year learning progression for carbon cycling in socio-ecological systems. Journal of Research in Science Teaching, 2009, vol. 46, no. 6, p. 675–698.

OROLÍNOVÁ, M. Skúsenosti z uplatnenia zakotvenej teórie pri skúmaní detských a laických interpretácií javov. Acta Fac. Paed. Univ. Tyrnaviensis, Ser. D, 2004, č. 8, s. 75–85.

ROSENTHAL, L. C. Writing across the curriculum: Chemistry lab reports. Journal of Chemical Education, 1987, vol. 64, p. 996–998.

PURSELL, D. P. Adapting to student learning styles: engaging students with cell phone technology in organic chemistry instruction. Journal of Chemical Education, 2099, vol. 86, no. 10, p. 1 219–1 222.

REDISH, E. F. The implications of cognitive studies for teaching physics. American Journal of Physics, 1994, vol. 62, no. 6, p. 796–803.

RUSHTON, G. T., HARDY, R. C., GWALTNEY, K. P., LEWIS, S. E. Alternative conceptions of organic chemistry topics among fourth year chemistry students. Chemistry Education Research and Practice, 2008, vol. 9, no. 2, p. 122–130.

SADEK, C. M., BROWN, B. A., WAN, H. A cost-effective two-part experiment for teaching introductory organic chemistry techniques. Journal of Chemical Education, 2011, vol. 88, no. 10, p. 1 431–1 433.

SALAH, H., DUMON, A. Conceptual integration of hybridization by algerian students intending to teach physical sciences. Chemistry Education Research and Practice, 2011, vol. 12, no. 4, p. 443–453.

SANDERS,W. L., RIVERS, J. C. Research Project Report: Cumulative and Residual Effects of Teachers on Future Student Academic Achievement. Knoxville : University of Tennessee Value-Added Research and Assessment Center.

SHEEHAN, M., CHILDS, P. E. ITS chemistry! An intervention programme aimed at developing thinking skills in chemistry. Paper presented at European Science Education Research Association (ESERA) conference, Lyon, France, Strand 2, available online at: http://lsg.ucy.ac.cy/esera/e book/base/ebook/strand2/ebook-esera2011 SHEEHAN 02.pdf, accessed 21/6/12.

SHEEHAN, M., CHILDS, P. E., HAYES, S. The chemical misconceptions of preservice science teachers at the University of Limerick: Do they change? IOSTENWE : Contemporary Issues in Science and Technology Education, 2011.

SHIBLEY, I. A., AMARAL, K. E., AURENTZ, D., MCCAULLY, R. J. Oxidation and Reduction Reactions in Organic Chemistry. Journal of Chemical Education, 2010, vol. 87, no. 12, p. 1 351–1 354.

SCHMIDT, H. J. Students’ Understanding of Molecular Structure and Properties of Organic Compounds. St. Louis : MO, 1996.

SIMPSON, P. Organic reaction mechanisms in the sixth form part 1. School Science Review, 1988, vol. 70, no. 251, p. 77–82.

STULL, A. T., HEGARTY, M., DIXON, B., STIEFF, M. Representational translation with concrete models in organic chemistry. Cognition and Instruction, 2012, vol. 30, no. 4, p. 404–434.

SZU, E., NANDAGOPAL, K., SHAVELSON, R. J., LOPEZ, E. J., PENN, J. H., SCHARBERG, M., HILL, G. W. Understanding academic performance in organic chemistry. Journal of Chemical Education, 2011, vol. 88, no. 9, p. 1 238–1 242.

ŠKODA, J., DOULÍK, P. Prekoncepce a miskoncepce v odborových didaktikách. Ústí nad Labem : Univerzita J. E. Purkyně, 2010, 273 s.

TAN, K. D., TABER, K. Ionization energy: implications of preservice teachers’ conceptions. Journal of chemical education, 2009, vol. 86, no. 5, p. 623–629.

TOPAL, G., ORAL, B., ÖZDEN, M. University and secondary school students’ misconceptions about the concept of “Aromaticity” in organic chemistry. International Journal of Environmental and Science Education, 2007, vol. 2, no. 4, p. 135–143.

VICENOVÁ, H., GANAJOVÁ, M. Chémia pre 9. ročník základnej školy a 4. ročník gymnázia s osemročným štúdiom. Bratislava : EXPOL PEDAGOGIKA, 2012, 142 s.

ZOLLER, U. Students’ misunderstandings and misconceptions in college freshman chemistry (General and Organic). Journal of Research in Science Teaching, 1990, vol. 27, no. 10, p. 1 053–1 065.

ZOLLER, U. Are lecture and learning compatible – maybe for LOCS – unlikely for HOCS. Journal of Chemical Education, 1993, vol. 70, no. 3, p. 195–197.

ŽOLDOŠOVÁ, K. Východiská primárneho prírodovedného vzdelávania. Bratislava : VEDA – TYPI Universitas Tyrnaviensis, 2006, 167 s.